Difference between revisions of "Math"

From Open Transactions
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
The Open Transactions wiki supports some math formatting options described in the [http://www.mediawiki.org/wiki/Manual:Math MediaWiki Math Page], and the [http://meta.wikimedia.org/wiki/Texvc Texcv Background / Instructions Page].  
 
The Open Transactions wiki supports some math formatting options described in the [http://www.mediawiki.org/wiki/Manual:Math MediaWiki Math Page], and the [http://meta.wikimedia.org/wiki/Texvc Texcv Background / Instructions Page].  
  
See also, for installation instructions: [http://www.mediawiki.org/wiki/Manual:Enable_TeX Enable_Tex], [http://www.mediawiki.org/wiki/Texvccheck Texvccheck], and [http://www.mediawiki.org/wiki/Extension:Math Extension:Math] pages.
+
See also, for installation information: [http://www.mediawiki.org/wiki/Manual:Enable_TeX Enable_Tex], [http://www.mediawiki.org/wiki/Texvccheck Texvccheck], and [http://www.mediawiki.org/wiki/Extension:Math Extension:Math] pages.
  
 
<br />
 
<br />
Line 10: Line 10:
  
 
<math>
 
<math>
\operatorname{erfc}(x) =
+
\operatorname{erfc}(x) =
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
+
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
+
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 
</math>
 
</math>
 +
 +
 +
*\int_a^x f(\alpha\,)\,dx

Latest revision as of 21:44, 26 May 2014

Math Fomula Formatting

The Open Transactions wiki supports some math formatting options described in the MediaWiki Math Page, and the Texcv Background / Instructions Page.

See also, for installation information: Enable_Tex, Texvccheck, and Extension:Math pages.



Math testing Area Below here

<math> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} </math>


  • \int_a^x f(\alpha\,)\,dx